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Abstract
The expansion of woody species into grasslands has altered community structure and ecosystem function of grasslands 
worldwide. In tallgrass prairie of the Central Great Plains, USA, decreased fire frequency and intensity have increased the 
cover and abundance of woody species. In particular, clonal shrub cover has increased at accelerated rates due to vegetative 
reproduction and resprouting after disturbance. We measured the intra-clonal stem demography and relative growth rates 
(estimated change in woody biomass) of the shrub Cornus drummondii in response to fire frequency (4 vs 20 year burn 
intervals) and simulated browsing during the 2018 and 2019 growing seasons at Konza Prairie Biological Station (Manhattan, 
Kansas). Overall, infrequent fire (4 year burn interval) increased intra-clonal stem relative growth rates and shrub relative 
growth rates. Intra-clonal stem relative growth rates were reduced in unbrowsed clones in 2018 due to drought and simu-
lated browsing reduced intra-clonal stem relative growth rates in 2019. Additionally, simulated browsing nearly eliminated 
flower production within clones but did not affect intra-clonal stem mortality or recruitment within a growing season. Fire 
in conjunction with simulated browsing reduced estimated relative growth rates for entire shrub clones. Browsed shrubs 
that experienced prescribed fire in 2017 had reduced intra-clonal stem densities compared to unbrowsed shrubs and stem 
densities of browsed shrubs did not recover in 2018 or 2019. These results illustrate that infrequent fire alone promotes the 
expansion of clonal shrubs in tallgrass prairie and multiple interacting disturbances (e.g., fire and browsing) are required to 
control the spread of clonal shrubs into grasslands.
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Introduction

The increased cover and abundance of woody species in 
grasslands, referred to as woody encroachment, has altered 
ecosystem structure and function in grasslands worldwide 
(Roques et al. 2001; Briggs et al. 2005; Van Auken 2009; 
Stevens et al. 2017). Woody encroachment has resulted in 
decreased floristic diversity and graminoid productivity 
(Briggs et al. 2002a; Lett and Knapp 2005; Ratajczak et al. 
2012), increased above-ground biomass (Hughes et al. 2006; 
Knapp et al. 2008), altered nutrient dynamics (Hughes et al. 
2006; Knapp et al. 2008; Barger et al. 2011; Ward et al. 

2018), and decreased forage for livestock (Anadón et al. 
2014). These alterations typically manifest as nonlinear state 
transitions in response to shifts in a number of drivers at the 
global, regional, and local level. These drivers may include 
increased atmospheric  CO2 and N deposition (global), 
altered precipitation patterns (regional), and changes in 
land-use management (local) such as fire suppression and 
increased grazing intensity (Van Auken 2009; D’Odorico 
et al. 2012; Ratajczak et al. 2014; Devine et al. 2017).

In mesic grasslands and savannas, which receive enough 
precipitation to support woody species, woody cover is lim-
ited by frequent disturbances including fire and browsing 
(Higgins et al. 2000; Sankaran et al. 2005). Frequent fire 
and browsing create demographic bottlenecks preventing 
the establishment of trees and shrubs and their transition 
into larger browsing- and fire-resistant size classes. This 
maintenance of shoots in vulnerable small size classes is 
commonly referred to as the fire and browse trap (Higgins 
et al. 2000; Sankaran et al. 2005; Briggs et al. 2005; Staver 

Communicated by Brian J. Wilsey.

 * Emily R. Wedel 
 erwedel@ksu.edu

1 Division of Biology, Kansas State University, 116 Ackert 
Hall, Manhattan, KS 66506, USA

http://orcid.org/0000-0001-6956-0530
http://crossmark.crossref.org/dialog/?doi=10.1007/s00442-021-04980-1&domain=pdf


1040 Oecologia (2021) 196:1039–1048

1 3

et al. 2009; Midgley et al. 2010; Ratajczak et al. 2011). The 
sapling stage is the most vulnerable, and once woody plants 
have outgrown the bottlenecks (reached a threshold mini-
mum height and diameter that can survive surface fires), 
they are more resistant and resilient to the effects of fire and 
browsing.

The effects of fire and browsing are most impactful when 
experienced in combination, resulting in a longer period of 
time spent in the fire and browse trap (Midgley and Bond 
2001; Staver et al. 2009; LaMalfa et al. 2018). Fire and 
browsing may reduce seed production as recovering stems 
experience trade-off among growth, defense, and repro-
ductive fitness (Goheen et al. 2007; Fornara and Du Toit 
2007; Young and Augustine 2007). Browsing can alter plant 
growth by causing increased branching and reduced verti-
cal growth in trees and shrubs (Augustine and McNaughton 
2004; Midgley et  al. 2010; Staver and Bond 2014) and 
induce compensatory growth by increasing investment in 
shoot growth to compensate for lost tissue (McNaughton 
1983; du Toit et al. 1990).

In the tallgrass prairie of the Central Great Plains of the 
USA, fire frequency and intensity are the primary determi-
nants of the amount of woody cover in the system (Bragg 
and Hulbert 1976; Briggs et al. 2002b). It is well understood 
that changes in land use have reduced fire frequency and 
intensity, aiding in woody encroachment. Fire frequencies 
of every 1–3 years are required to maintain a grassland state, 
while suppression of fire for just 4 years in tallgrass prairie 
allows establishment and growth of clonal shrubs which can 
quickly grow to a size resistant to fire (Ratajczak et al. 2014). 
Additionally, browsing pressure on woody shrubs has been 
greatly reduced in the Central Great Plains since European 
settlement (mid-1800s) due to the decline in the diversity 
and abundance of large browsers, such as elk and prong-
horn (Conard et al. 2006; Flores 2016). Historically, large 
populations of browsers may have interacted with fire to aid 
in the suppression of woody plants across the landscape. 
The effects of browsing on encroaching shrubs in tallgrass 
prairie are unclear and largely understudied compared to 
other disturbances.

For many regions of this ecosystem, the primary 
encroaching shrub species is Cornus drummondii C.A. 
Mey (rough-leaf dogwood), a clonal shrub native to tall-
grass prairie but historically at low abundance. Clonal 
shrubs spread vegetatively via rhizomes and resprout after 
disturbance from below-ground basal and rhizomatous 
buds. These clonal traits make shrubs highly successful in 
disturbance prone systems like the tallgrass prairie, which 
experiences frequent fire, drought, and herbivory. Following 
colonization of a clonal shrub by a seed, expansion of C. 
drummondii and other clonal shrubs in tallgrass prairie is 
primarily due to lateral rhizomatous spread (Ratajczak et al. 
2014). Clonal, resprouting shrubs are more resilient to fire 

and browsing than non-resprouting shrubs and are typically 
more likely to survive after disturbance via regrowth after 
top kill due to established root systems, below-ground per-
ennating storage organs, and bud banks (Clarke et al. 2013; 
Dietze et al. 2014). Post-burn resprouting shrubs tend to 
regenerate rapidly from basal and below-ground buds result-
ing in increased stem densities and growth rates compared 
to shrubs that are infrequently burned (Heisler et al. 2004, 
2007; Lett et al. 2004).

In this study, we assessed the effects of fire and brows-
ing on intra-clonal stem demography and growth of discrete 
C. drummondii shrub clones in tallgrass prairie. Studying 
intra-clonal stem dynamics is uncommon and can provide 
detailed insight into the growth strategies clonal shrubs 
use to recover from disturbance such as fire and browsing 
and the effectiveness of these disturbances on suppressing 
woody growth. To understand the interactive effects of fire 
and browsing on intra-clonal stem dynamics, we used an 
existing simulated browsing experiment in tallgrass prairie 
(O’Connor et al. 2020) and tracked the mortality, recruit-
ment, and flower production of stems within distinct shrub 
clones. To assess the effects of fire frequency, we compared 
shrub clones within a landscape burned at a 4 year inter-
val to clones within a 20 year burn interval. Additionally, 
we quantified intra-clonal stem relative growth rates (RGR; 
estimated woody biomass) and estimated RGR of entire 
shrub clones. We hypothesized shrubs clones within the 
4 year burn interval would have increased intra-clonal stem 
densities and stem RGR and decreased flower production, 
as clones invest in stem production and growth to recover 
after disturbance (Heisler et al. 2004; Lett et al. 2004). We 
also hypothesized that simulated browsing would reduce 
intra-clonal stem RGR and flower production and increase 
intra-clonal stem mortality, because the frequent removal 
of above-ground tissue would deplete below-ground growth 
reserves from repeated investment in above-ground growth 
(O’Conner et al. 2020). Finally, we hypothesized that the 
effects of browsing would be largest in conjunction with 
fire, with larger differences in RGR and intra-clonal stem 
mortality and recruitment between simulated browsed and 
unbrowsed shrubs in the 4 year burn interval than in the 
20 year burn interval.

Materials and methods

Study site

Data were collected at Konza Prairie Biological Station 
(KPBS;  39o05ʹ N,  96o35ʹ W) located 15 km south of Kan-
sas State University in Manhattan, Kansas, USA. The Konza 
Prairie is a 3487-hectare native tallgrass prairie character-
ized by uplands with shallow limestone soils and lowlands 
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with deep silty-clay loams separated by rocky hillslopes. The 
elevation varies from 320 to 444 m above sea level. The site 
is divided into watershed units, each assigned to a specific 
fire frequency (1, 2, 4, or 20 year intervals) and grazing 
treatment (bison, cattle, or no large mammalian grazers). 
Mean annual precipitation (1982–2019) is 842 mm, with 
approximately 73% of annual precipitation falling during 
the growing season (April–September). Sampling was done 
during an extremely dry year (2018) and wet year (2019). In 
2018, only 55% (283 mm) of growing season precipitation 
fell before or during the sampling period. In contrast, grow-
ing season precipitation in 2019 was approximately 49% 
higher (915 mm) than the long-term average (614 ± 26 mm 
from 1982 to 2019; all data reported as mean ± SEM). Tem-
perature means (1982–2019) range from a low of − 1.2 °C 
in January to a high of 26.1 °C in July.  C4 warm-season 
grasses (Andropogon gerardii Vitman, Panicum virgatum L., 
Sorghastrum nutans L. Nash, and Schyzachyrium scoparium 
Michx.) dominate the plant cover and annual productivity in 
portions of the site that are frequently burned (1–2 year burn 
intervals). Areas subject to infrequent burns (prescribed 
fire every 4 or more years) are encroached primarily by the 
clonal woody shrubs C. drummondii and Rhus glabra L. In 
areas of KPBS with 20 year burn frequencies, Juniperus 
virginiana var. virginiana L. (an evergreen tree) is abundant.

Study design

We conducted this research in the summers of 2018 and 
2019 on two ungrazed experimental watersheds at KPBS 
which included 4 year (last burned in 2017) and 20 year 
(last burned in 2012) burn frequencies. Prescribed burning 
occurs during the spring (March–April; Knapp and Seastedt 
1998). We used the widespread clonal shrub C. drummon-
dii to assess the effects of fire and simulated browsing on 
intra-clonal stem growth, reproduction, density, and demog-
raphy. C. drummondii reproduces vegetatively via rhizomes 
and produces new stems from basal or below-ground buds, 
resulting in the formation of discrete multi-stemmed shrubs 
(“genets” or “clones”) made up of genetically identical 
stems. C. drummondii often resprouts from several basal 
buds located at the base of ramets that were killed by dis-
turbance such as fire. C. drummondii shrub clones usually 
produce flowers in June and set fruit in July (Great Plains 
Flora Association 1986).

Simulated browsing experiment

Stems within shrub clones in the 4 year and 20 year burn 
intervals were subjected to simulated browsing to under-
stand the impacts of fire, browsing, and their interaction on 
intra-clonal stem demography and RGR. These shrubs were 
a part of a simulated browsing experiment established in 

2015 (described in O’Connor et al. 2020). In 2015, 40 iso-
lated shrub clones were randomly selected in the lowlands 
of the 4 year and 20 year burn interval watersheds (n = 20 
shrubs in each burn treatment; Table 1). While true replica-
tion of treatments was not possible in this watershed-level 
study, the watersheds contain similar silty-clay soils, had 
similar land-use history prior to initiation of the different 
fire return interval treatments, and have received consist-
ent fire treatments for nearly 40 years. Half of the shrubs 
were randomly selected for a simulated browsing treatment 
(n = 10 browsed shrubs and 10 unbrowsed shrubs in each 
watersheds). Browsing was simulated by stripping 50% of 
current year shoot growth by hand from each stem within a 
given shrub clone each month throughout the growing sea-
son (May–September). The ‘browsed’ tissues were removed 
from the site. Simulated browsing occurred every growing 
season from 2015 to 2019.

Sampling

We established a 0.25 m-wide transect that spanned through 
the longest axis of each shrub clone. In May 2018, we tagged 
each stem, including all stems originating from basal buds 
at the soil surface and from rhizomatous buds, within each 
transect using an insulated copper wire ring around the 
shoot base. We recorded the number of living stems. Stems 
were counted again in September and the number of dead 
(with tag) and new stems (no tag) was recorded. Many of 
the small stems were easily identifiable as basal resprouts 
and we could be confident we did not include seedlings in 
intra-clonal stem counts. Stem densities were calculated as 
the number of live stems within the transect of each shrub 
clone at the end of the growing season divided by the area 
 (m2) of the transect. Flower production was estimated as 
the number of flowering stems within each transect during 
peak flowering in June. We estimated flowering effort by 
counting the number of inflorescence clusters on five stems 
on the periphery and five stems in the center of each shrub 
clone. Measurements were repeated in May and September 
of 2019.

Table 1  Burn interval, years since last burn, if shrub clones were sub-
ject to simulated browsing (N No, Y   Yes), and the number of shrub 
clones for each treatment

Burn interval 
(years)

Years since last burn Simulated 
browsing

n

2018 2019

20 6 7 N 10
20 6 7 Y 10
4 1 2 N 10
4 1 2 Y 10
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We used five center and five peripheral stems to measure 
stem height (to the nearest 1 mm) and basal diameter (to the 
nearest 0.5 mm) in June (May in 2019) and August. Height 
was measured to the last leaf-bearing node on the tallest 
shoot axis. Height and diameter of stems within shrub clones 
were used to estimate woody stem biomass using published 
allometric equations (Heilser et al. 2004). Intra-clonal stem 
RGR (g  g−1  wk−1) was calculated as

where  biomass1 and  biomass2 are estimated stem dry weight 
(g) at timepoints t1 and t2 (# of weeks). When diameter or 
height were larger at the beginning than end of the growing 
season, final measurements were set to equal initial measure-
ments and calculated as zero growth. Negative RGR were 
assumed to be zero growth, such as simulated browsed 
stems with reduced height at the end of the season due to no 
growth after removal of browsed tissues. We used allometric 
relationships for woody biomass and excluded herbaceous 
tissues as any shifts in allometry due to simulated brows-
ing would likely impact herbaceous tissue more than woody 
tissue.

The area of each shrub clone was calculated using an 
ellipse area equation by measuring the maximum horizon-
tal length and perpendicular width of each clone at the end 
of each growing season. Clones ranged from approximately 
14 to 162  m2. To estimate the total number of stems per 
clone, we multiplied clone area by the end of season intra-
clonal stem density of each shrub clone. We then estimated 
the RGR of a shrub clone by multiplying the number of 
stems per clone by the average intra-clonal stem RGR of 
each clone. Additionally, we compared leaf size among 
treatments. We measured leaf area  (cm2) of four randomly 
selected leaves from each shrub clone using LEAFSCAN 
smartphone application (leafscanapp.com).

Statistical analysis

All analyses were conducted using the statistical software 
R V3.6.0 (R Core Team 2019). Stem RGR and leaf area 
were averaged for each shrub clone before analysis. We 
used repeated-measures ANOVA to test for differences in 
end of season intra-clonal stem densities, intra-clonal stem 
RGR, and estimated clone RGR among treatments using the 
lme4 (Bates et al. 2015) and car package (Fox and Weisberg 
2019). Estimated clone RGR were log transformed to meet 
the assumptions of normality and homogeneity of variance. 
The effects of fire, simulated browsing, and year on the num-
ber of stems producing flowers within each clone as well 
as intra-clonal stem recruitment and mortality were tested 
using generalized linear mixed effects models with a logit 

ln
(

biomass2

)

− ln
(

biomass1

)

t2 − t1

,

link using the lme4 package (Bates et al. 2015). Fixed effects 
for all models included simulated browsing treatment, burn 
interval, sampling year, and their interaction. Shrub ID was 
included as a random effect to account for repeated meas-
ures. For mixed models, we report X2 values with associated 
P values to assess the effects of the fixed factors. We used 
pairwise comparisons where necessary to determine the 
difference between treatments using the emmeans package 
(Lenth 2019) with Tukey’s HSD adjustment.

Results

Intra‑clonal stem densities

More frequent fire increased intra-clonal stem densities in 
unbrowsed shrub clones. On average, unbrowsed clones 
in the 4 year burn interval had greater stem densities than 
clones in the 20 year burn interval (Table 2). While fire 
alone increased intra-clonal stem densities, fire in conjunc-
tion with simulated browsing significantly reduced stem 
densities (Table 2; Fire and simulated browsing interaction: 
X2 = 5.87, df = 1, P = 0.015). This difference in intra-clonal 
stem densities between simulated browsed and unbrowsed 
clones in the 4 year burn interval was only significant in 
2018 (P = 0.004). Unbrowsed clones in the 4 year burn inter-
val had significantly higher mortality in 2019 (12.83 ± 0.93% 
of stems) than in 2018 (4.73 ± 0.89% of stems; P < 0.001) 
and reduced differences in stem densities between the simu-
lated browsed and unbrowsed clones (Table 2; P = 0.25).

Stem relative growth rates

The effects of fire and simulated browsing on intra-clonal 
stem RGR varied by year (Table S2; three-way interaction: 
X2 = 4.99, df = 1, P = 0.025). Intra-clonal stem RGR did not 
differ among fire or simulated browsing treatments dur-
ing the 2018 drought but simulated browsing significantly 
reduced intra-clonal stem RGR in 2019 (Fig. 1; P < 0.001). 
In 2019, unbrowsed stems in the 4 year burn interval had sig-
nificantly higher RGR than all other treatments (P < 0.001).

Flower production

Simulated browsing nearly eliminated flower production 
(only 1 stem of 1 shrub clone flowered in 2018 and 2019; 
Fig. 2). For this reason, we removed the browsed treatment 
from analysis for differences in flower production among 
treatments. Flower production showed a significant inter-
action between fire and year (Table S3; X2 = 158.74, df = 1, 
P < 0.001). Fire reduced flower production as clones in the 
20 year burn interval had significantly higher proportion 
of flowering stems than clones in the 4 year burn interval 
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(Fig. 2; P < 0.001). Clones the 4 year burn interval had 
more flowering stems in 2019 (2 years since fire) than 
2018 (1  year since fire; P < 0.001). Fire also reduced 
the number of inflorescences per stem within clones 
(Table S4). In 2018 and 2019, clones in the 20 year burn 
interval had 31.33 ± 5.07 and 30.68 ± 5.02 inflorescences 
per stem, respectively. Shrubs in the 4 year burn interval 
had 0.83 ± 0.50 inflorescences per stem in 2018 and this 
increased to 4.95 ± 1.29 in 2019 (Table S4).

Stem mortality and recruitment

Fire and simulated browsing had minimal effects on intra-
clonal stem mortality and recruitment within a growing sea-
son (Fig. 2). Intra-clonal stem mortality showed a significant 
interaction between simulated browsing and year (Table S3; 
X2 = 9.73, df = 1, P = 0.002). Intra-clonal stem mortality 
did not differ among treatments in 2018 or 2019 (Fig. 2; 
P > 0.05), but unbrowsed clones in the 4 year burn interval 
had higher mortality in 2019 (12.8 ± 0.01% of stems) than 
2018 (4.73 ± 0.01% of stems; P < 0.001).

Intra-clonal stem recruitment showed a significant inter-
action between fire and simulated browsing (Table S3; 
X2 = 4.18, df = 1; P = 0.041). Unbrowsed clones within the 
4 year burn interval had significantly lower intra-clonal 
stem recruitment than unbrowsed clones in the 20 year burn 
interval in 2018 and 2019 (Fig. 2; P = 0.001 and P = 0.005, 
respectively). There were no differences in intra-clonal stem 
recruitment between years for any treatment (Table S3; main 
effect of year: X2 = 0.08, df = 1, P = 0.77).

Clone relative growth rates

Differences in relative growth rates (g   g−1   wk−1) for 
entire shrub clones varied by year (Table S5; interac-
tion between simulated browsing and year: X2 = 19.77, 
df = 1, P < 0.001). Overall, fire increased clone RGR 
in unbrowsed shrub clones, while simulated browsing 
tended to reduce clone RGR (Table 2). Unbrowsed clones 
in the 4 year burn interval had higher growth rates than 
all other treatments in both years (P < 0.001). In 2018, 
there was no difference in clone RGR between simu-
lated browsed and unbrowsed clones in the 20 year burn 
interval (P > 0.99), but in 2019, unbrowsed clones had 
significantly higher clone RGR than simulated browsed 
clones (Table 2; P = 0.002).

Leaf area

Simulated browsing reduced average leaf size  (cm2) of shrub 
clones (Table S6; P < 0.001). On average, browsed shrubs 
had 86.91% smaller leaves than unbrowsed shrubs in 2018 
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and 51.05% smaller leaves in 2019 (Fig. 3). Fire frequency 
did not affect leaf size.

Discussion

The data shown here illustrate that intra-clonal stem dynam-
ics of C. drummondii vary in response to multiple top–down 
drivers, with the greatest reduction in shrub growth rates 
when fire and simulated browsing interact. Simulated brows-
ing in conjunction with fire reduced the RGR of both intra-
clonal stems and entire shrub clones, while infrequent fire 
alone (4 year burn interval) had the opposite effect, resulting 
in increased woody growth. Overall, unbrowsed shrubs in 
the 4 year burn interval had greater intra-clonal stem den-
sities, stem RGR, and clone RGR than the other fire and 
simulated browsing treatments. Increased stem densities in 
response to 4 year burn frequencies agree with the previous 
research that showed fire stimulates growth of rhizomatous 
and basal buds after top kill (Heisler et al. 2004; Lett et al. 
2004). Stem densities at the beginning and end of the season 
tended to be similar (Table 2) due to low stem mortality 
and the complete replacement of any stems that died during 
the growing season (Fig. 2). This is similar to intra-clonal 
dynamics of another major encroaching species in tallgrass 
prairie, Rhus glabra. Hajny et al. (2011) found stable stem 
densities of R. glabra due to complete replacement of stems 
after fire. Additionally, population growth in R. glabra was 
higher in burned than unburned sites (Hajny et al. 2011). 

In this study, unbrowsed clones in the 4 year burn interval 
had the greatest RGR of both intra-clonal stems (2019) and 
entire shrub clones (2018 and 2019). These results illustrate 
that woody growth rates are greater in infrequently burned 
areas (4 year burn interval) even in years without fire.

Fire in conjunction with simulated browsing inter-
acted to alter intra-clonal stem densities and RGR . Stem 
densities of browsed shrub clones were significantly 
reduced after the fire in 2017 due to reduced vegetative 
resprouting (O’Connor et al. 2020). Here, we show even 
1–2 years after fire, stem densities of browsed clones have 
not recovered. Additionally, simulated browsing reduced 
intra-clonal stem RGR in the 4 year and 20 year burn inter-
vals in 2019, suggesting that shrub clones did not show 
compensatory stem growth after 4 and 5 years of simu-
lated browsing. Compensatory growth is a common plant 
response to herbivory (McNaughton 1983). For example, 
simulated winter browsing tended to increase shoot growth 
during the following growing season in Acacia species, 
attributed to release from intraspecific competition for 
light (du Toit et al. 1990; Gadd et al. 2001; Rooke et al. 
2004). Clonal shrubs that experience simulated browsing 
may invest in production of new stems and basal resprouts 
to compensate for lost tissue rather than increase growth 
of existing stems. Shrub clones that experienced simulated 
browsing had to repeatedly invest in growth and resprout-
ing to recover lost tissues. This growth strategy reduces 
below-ground nonstructural carbohydrates (NSC) stores 
(O’Connor et al. 2020). Depleted NSC stores potentially 

Fig. 1  Barplot of Cornus drum-
mondii stem relative growth 
rates (g  g−1  wk−1, means ± 1SE) 
for fire and simulated brows-
ing treatments in a 2018 and b 
2019. Units can be interpreted 
as biomass per unit existing 
biomass per week. Grey points 
represent the data points. Dif-
ferent letters indicate significant 
differences within and among 
years (P < 0.05) based on pair-
wise comparisons with Tukey’s 
HSD adjustment
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reduce the clones’ ability to recover from fire or invest in 
growth the following growing season. In 2018, there was 
no difference in intra-clonal stem RGR between fire or 
simulated browsing treatments and stem RGR were low in 
all treatments likely due to the summer drought.

Fire alone decreased flower production as unbrowsed 
clones in the 4 year burn interval had lower flower produc-
tion than clones in the 20 year burn interval. Clonal and 
resprouting plants in frequently disturbed areas tend to have 
lower sexual reproduction due to allocation of resources to 
below-ground storage, maintenance of bud banks, lateral 

vegetative growth, and resprouting to recover from distur-
bance (Hoffman 1998; Bond and Midgley 2001; Lamont 
and Weins 2003; Herben et al. 2015). In addition, C. drum-
mondii flowers relatively early in the growing season (May 
and June), which reduces root NSC stores (Janicke and Fick 
1998) and suggests the amount of carbon gained the pre-
vious year may influence flower production the next year 
(Keeley 1977). Decreased flower production of unbrowsed 
shrubs in the 20 year burn interval in 2019 may be explained 
by reduced carbon gain during the 2018 drought. In con-
trast, unbrowsed shrubs in the 4 year burn interval likely 

Fig. 2  Boxplot of the proportion of Cornus drummondii stems within 
the transects that produced flowers (flowering), are new (recruitment), 
or died (mortality) for fire and simulated browsing treatments in a–c 
2018 and d–f 2019. Proportions were calculated as: (1) flowering = # 
of flowering stems within transect/# of live stems at the beginning 
of the season; (2) mortality = # of dead stems at the end of the sea-
son/# of live stems at the beginning of the season; (3) recruitment = # 

of new stems at the end of the season/the total # of stems at the end 
of the season. Red diamonds represent the means for each treat-
ment. Different letters indicate significant differences within years 
(P < 0.05) based on pairwise comparisons with Tukey’s HSD adjust-
ment. Simulated browsed shrub clones were removed from flower 
production analysis and do not have letters to indicate significant dif-
ferences
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recovered to pre-fire sizes in 2019, resulting in increased a 
flower production. Thus, precipitation and time since fire 
may have interactive effects on flower and seed production. 
However, it is important to note that little is known about 
seed production and seedling establishment and survival of 
C. drummondii in tallgrass prairie and further work at the 
meta-population level is needed to fully understand trade-
offs between vegetative and sexual reproduction in response 
to disturbance.

Contrary to our hypothesis, simulated browsing did not 
result in increased intra-clonal stem mortality. This was sur-
prising as these clones faced an extremely dry year in 2018 
and repeated simulated browsing throughout the growing 
season. Stems that died within shrubs throughout the grow-
ing season were replaced by new recruits. The low stem 
mortality and ability of these shrubs to recruit new stems 
during the 2018 drought in combination with the simulated 
browsing treatment emphasize the persistence of clonal 
shrubs and the significance of below-ground NSC and bud 
banks for stabilizing clonal plant population dynamics (Ott 
et al. 2019). Stem turnover was primarily due to mortal-
ity and recruitment of small basal resprouting stems rather 
than turnover of larger, established stems (personal observa-
tion). The difference in intra-clonal stem densities between 
unbrowsed and simulated browsed shrubs experiencing a 
4 year burn interval, despite no difference in single-year 
stem mortality or recruitment indicates that fire and brows-
ing have longer-term cumulative effects on stem population 
dynamics that were not detected within one or two grow-
ing seasons. Additionally, there was a similar increase in 
shrub clone size from 2018 to 2019 without a shift in stem 

densities suggesting lateral expansion during the 2019 grow-
ing season.

Browsed shrubs tended to be shorter and smaller than 
unbrowsed shrubs in both the 4 year burn and 20 year 
burn watersheds (data not shown) and browsed clones 
had decreased shrub cover and increased grass cover 
(O’Connor et al. 2020). Leaves on browsed shrubs were 
on average ~ 86% smaller than unbrowsed shrubs in 2018 
and ~ 50% smaller in 2019. Browsed shrubs may reduce leaf 
size to invest in more leaves and fill out the canopy faster 
than investing in fewer large leaves (Hartnett et al. 2012). 
Other studies of simulated browsing have shown increased 
leaf area (Rooke et al. 2004). However, these studies either 
implemented browsing during the winter or browsed less 
frequently than our study. Additionally, we hypothesize that 
reduced leaf size may reduce the damage from future brows-
ing by reducing the amount of tissue lost per bite (Rhodes 
et al. 2017).

Conclusions

We assessed the intra-clonal stem demography and RGR 
for the most important encroaching woody species in the 
Kansas tallgrass prairie region, C. drummondii, in response 
to simulated browsing and fire. The study shows the persis-
tence of established clonal shrubs despite multiple distur-
bances in tallgrass prairie and emphasizes that infrequent 
fire alone (4 year burn interval) promotes, not controls, 
the growth of shrub clones. In addition, concentrated and 

Fig. 3  Barplot of Cornus 
drummondii leaf area  (cm2, 
means ± 1SE) for fire and simu-
lated browsing treatments in a 
2018 and b 2019. Grey points 
represent the data points. Dif-
ferent letters indicate significant 
differences within and among 
years (P < 0.05) based on pair-
wise comparisons with Tukey’s 
HSD adjustment
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repeated browsing during the growing season in conjunc-
tion with fire may be an effective management technique 
to suppress shrub growth and reduce clone size. Simulated 
browsing during the growing season was an effective con-
trol for shrub flower and seed production. An investment in 
shrub removal strategies (brush cutting, herding browsers, 
herbicides) is likely to prevent or minimize contributions to 
the seed bank. Drought may reduce growth rates, but does 
not appear to affect shrub survival in the short term. Future 
research should focus on the mechanisms of establishment 
and impact of disturbance on the growth and persistence 
of juvenile shrubs.
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